# Loading and Unloading Trains
For fast loading and unloading items always use an Iron chest
or a Steel chest
between the Cargo wagon
and Belts
. When loading and unloading liquids use a Storage tank
between the Pump
and (Pipes
). In this case, chests and tanks will act as a cache (opens new window) when moving items and liquids between trains.
You can place up to 6 inserters
on each side of the cargo wagon, with is a maximum of 12 inserters on both sides. The use of Burner inserter
is extremely inefficient and can only be used when loading and unloading fuel. Regular yellow Inserters
can be used if the item-feeding belts are not full, for example for items that take a long time to produce. The Long-handed inserter
is not very convenient, except for loading the Artillery shell
into the Artillery wagon
to increase the number of intermediate chests due to the small number of items in the stack. When unloading, you should use only Stack inserter
, in extreme cases, Fast inserter
. All Inserter capacity bonus
research must be completed.
You can also place up to three pumps on each side of the Fluid wagon
, for a total of 6 pumps on either side. But such a number of pumps is not advisable, two pumps per wagon are enough.
# Unloading items
According to the Factorio wiki (opens new window) 6 Stack Inserter
docked to one side of a cargo wagon are capable of continuously unloading approximately 1.85 full Express transport belt
lanes, if each manipulator unloads onto a dedicated conveyor lane. This is theoretically the maximum possible speed of unloading a cargo wagon. Accordingly, if a 4-wagons train is surrounded by manipulators on both sides, then the total unloading will be approximately 14.8 full lanes of the express conveyor (approximately 7.4 on each side of the train). The following blueprint shows how such an unloading can be organized.
0eNqlnW1uHUeSRbdi8DdlVFZ+ewG9iYEwkO0HNzEyJZDUoA3Dex/S0rifWlX0yTi/um1LeV/ciKrKjIi88fvNj+8/XT4+3N0/3fzw+83Pl8efHu4+Pt19uL/54SaV78d3l399fLg8Pn739PDu/vHjh4en7368vH96vLm9ufvpw/3jzQ//9fvN490v9+/evyzw9NvHy/PfvHu6/Pr8J+7f/fryT1+WePPXEm9elrj543mJ+58v/7r5If1x+7eLPLy7e3/1V/Y/3t7eXO6f7p7uLp9/xJ//8Nt/33/69cfLw/Oaf/3Nx2fcu1/++fTmzyVubz5+eLz7bOHvN88rzdlvb367+eFNH/OPlx/yHwvtf2fHwYrp+/r/a7bv6/Ov/vnu4fLT5z/SDjByAGN7BaMcYJQAxr5oR70i/d1P//Pm7v7x8vD0/F8O1s6vrL0frN2u1r5c3r/56Z+Xx8MfXb5e+GCp/lVUvfkSeQdL1X8v1Y+XGgsW10WL519r/3r5+e7Tr28u75//+MPdT28+fnh/+RvT+58I95fnyP/xw6eHl2ck5dvZ3h4ApS3wsPQjOlJa4GMsRlfaaQjMvw2BlJfJna+SO2/Tlg7JXX/w0ralxVhJ/NF7Xn1bZb5FbNgX31Cpr7+ixpVXCjJlBEDGKyCHlkxnSSUg++a+TPX4ydiTWxZ5Yd/dF68iEPlZRa7e5XeVWRL8sFby6thbbPGCFu+OHhZNI7A3KCfhPwNrnTxKeYvtDhCzOcUWRzGR98CO4JiDHNsRIMfnElscPXS5BrYbJ1GVW2Cts6jqckPBImAENxTMcVPagB6RsgVtQPFRktwUIT+UXaKgr1jJEZS8uGMpRaIwr9cISlllrAW2eP3fIDsCkTtiBjIcSEYg0227d5R+2BwIsqQmt6vMyBK5P0aOr9nt9JlPigPJxx/BGtwRZ/IGqcEd8Y4WlztixvpwICxII1vl/difbQusdRIbLbgzRu5re2xxFHgtB7bd+ZCD4M4YRVerscVRVLXIVvksqnpgrbOoGnLLyiJgBresyHE9uiFGnutJMoQewG43xOjb2LNEQd7udkOMdiy9ShTml1COuK7a0uXmnnl/SBTm/SkZQ7aMyKb4CmRDIMmdhhJ5v4zApvil8nAKcmhJdiAbsqQ4uphPqjsNMUuaOzwyx3dnCXO8PAYzn0x3rkOWzM2BIMdPWSZKx7usuceOXgkV1LM7FaFgnSVwkjljo8YOG4yNZvoLtpMS+O0+x1EZfEaaLrYTWkbgmJQOV5qxkwyKhOePdeD4cRIKL9SKjoXtpB3kNm/5uCVkDx4VIDVZnhVQiKfNbrDRWz1tVZ4WoDVNWpOYNXaPvTFrhtz+QtKmtIaRljZpDYu0FDpjt2VrQofsvmxNltawSEtFHYH6ZMZUhzLQizNFNtzlFZRjW7o6oHzL2LEtQ521qF+ms4UxFunGurYFoiR1SIF+iXRnXZ23oF8i7VnXtkDGirOFPZV7VUcuylhTZy7q/e5QxskGdh+OI+iJGTpAfsvN4ZdkqaMrv/Lbj1dP6nwKGcq7Q2FR9FXfFzwG/7n04WIldA6mTq2Bn3oW5bnFfiqMkL5+8u3z+IeO9cPpuYNi52gYSyVwjj51UIldUYAPVwkemykT8tgMn4gi7yzAaC7BSwvUF/K4TMnqEoZtZMpwOQa4xyhTwjDXV3lchr6pyR3+IWl1lzCQtCxJY5FWizuVU2uqyzHQEGgSBpLWJWkw0kJvgeWzWZ0ShpHWIofmqzdnZyiRQ/PVG41dXmu7swVexMsu/dMZSnEokDGZMIPebw4F+qW79A9kbLhUFrRFJsyYX7pMmLFI7smlf+DFVZkwg4zJhBlkrDgUyJhMmEHGZMIMMtadLeyp7MPZcnYRvk+XDmK/PtKFdo3CPDFSLD3X0U5yxHpTOrvAPyIJsxNVijQCTSinETJiXSiU1WDCDLIaSZgdS1uMSMLs1EEzsNiZg+YWS2mxh2oGE2bsxTB3mWpiUTZt4oyF2yzBjBZ0RTRhBn1hE2bQFzZhxrYY0ybMoMttwqwzsY9NppggTJIppsZgdgmDIm2PdZmVxRDYN5swg6RVCQNDwCbMIGldwkBrbMIMRlroLTBXrYl1ma2eZ/dYl9lcDYFQl1nalq2JnJuvPv1MByjUZHb1UWOaT6Ems30ZpTlbIGPd2cK0gUJNZnWZsekypkwGKtRkVlb9Emoyq6t+2d1tLspYdrlM5v1Qk1lb9kt1tkC/uBtdlDF3pYt6393poow5bRPo/ezk/iBj2ambQO9nJ6rbz7TbslP8o55wkn8wqnJ1KNDfMamTzpQFv2pXW1idSQvmgOzfeegExEz6mYRmiQn/QVZLTN8EsloC0n/9hIYcSHKecloCi515u8QUTOBDVVpsdfZiKFL/j8aB1DuhwRwUPIGuqEHFE+iLWH/Z8ns01l+2fCCrUvQEfv1j/WX7agDH+suWT36x/rLlQ1mVlzKpNfJSJvXNlMk/Zk3bZMaU+abJS5nwLdDkpUzom5Zl8g/CFJnKhKRVCQNDoEnSYEBH3gIpLcMMmZiFpE0Jw0Kgb5I0Zk2k1axfRcDOUCJpsyvKMkORKXOkF7eHWs22Vxg7RqnOFugXmTKHjMmUOfT+cLZAxqazhXlfyp9BxkL6Z2UZZXcokLHsGGPeHzJlzp6XIVPm0C9OC5z6RbaYQ7/IlDlkTKbMmfen0wOHjE2pycC8P50iOGXMSYJTW4qzBfpFJtChLcEEOtJU3WcPZKX3s8k2Qwi+fQmgrwXf/pQPuy3HU+X2q844LPnW89konWBKHfGct8C4yJ6Pf2hgSt2Zy/JmxtQdueyLQt9tPR5Wl7eYbjh7WHKsgy0te7MFk77QCtu/Cq0YEgZ9ivNm+1fR2zhbfTRoTbL9q8w3yV74zgzG9q9C39j+VQhj+1chabZ/FUaa7V+FkTZkYhH6xvavMtJ227/KrNmThGGRttv+VRYCe5b5S0hakdbAEKjSGuibyFsg5WXSQgn5fZm0IWFgpE2XwkbiojnSyXaNsjGU5NK+EEWm4yFjMh2PNJlzlul4yFh1yWVoS3PJZeiX7myBjA1ny8YYmy7ty/xSZAc780uRHezML0Wm45lfihtIQhlzE0koSnW2QMZkOh56X3aww+fFjauntrh59dD7ofGcc9X71Q0m6SfzF7IcyQn9LWdyUo5kAp5FVZUJeGhLcyjQL8FOdjSjINcRW31jq0da27ezQeaBQZ2nz1RwUidkNTiqE7IamdXZ0zENkdb2U04DY+vPvR3sZGcPVeux1dmLwQ7spHEgR9nDYI6O7oSu6Cm4PPNFtw3szBddjrGHG5luG9jZ97PLqUI0suTgTuqbLmGgb+ToTuobOVUI+mZsssjASBtJwjDSxi4LQJA0OVWIWlNkyQTC2AZ29niOJmFgpHVJGgyBIYsMEGZKGBYCc5OVGeabmSQMi7SQ4ltaPlOFFN/ScnJ2FlmZgaRVCQNDIFQ1W87PhhTg0vJHOqAAd11oapOhuKJZQ1LpZdtUcYbZUjZXNKMou0OBjGXHGERxsk8NzX0pm5N9on5xd1goY+4OC0Vxsk/UL072CfoluaJZQ+NySnJFM+iX5GSfKGNO9gl6P7k7LNQv7g4L9UtThSbqF1c0o4y5OyzUFlc0g37ZnexTO5nYVnYn9ASfkN0JPUF/7072iXrCyT5RW1zRjPoldmuloZFLZY8Vy9pgqwdkn9o4ewwCtbHTZyrH7qhAVnOsWAZZzQHZpzaPaQjIPp1zGqiNnXo7x2Sf4EOVY8Uy+GLIUvaJxoGsmtFgDso+QVeUYLUM+qJI2SfoiyKrZnAjU6TsE3R5kVUz+JkuUvaJkiarZtQaKftEfSOrZtSa6Soz0DdVVs2gNVVWzaBvqqyawZdNlbJP1BpZNaO+kVUzGmmyakZ9I2WfqG9k1Yz6Rso+Qd80WTWDvgmJv6Xlj3STVTPom5D4W1r+SDdZNaOkVVdnojCyakZJ667Q1BmKLJo1hjJdcYbZEpoxmpZRkrOFMdZl0QyiZFecgYzJohlEkUUzyJgsmkGU7oozaL5cCQm/lWW/yKIZY0wKv1GU5IozzC9DFs2YX4YsmkHGZNGsMcaqKzRBxmTRDNrSXaEJxpgsmkHvT1eqYX6Zsmh2MrW1TFk0Y/4OSb3tq/6eOVakQfPwygwMID6nPTaAmP7UJmTRvrj0K42tL/pat71ubw8B+7ouWmtn3IxA3aYfLxWYSXzms7rFZhKz4K1XfWrrumhHPvuiY/fss/z2EFCOKWaxWLccrFtA2oosKKDXb43JvK3uiWtsUOm+7BObgm8MRk5eoNZMCcN8k+S4YhhpyabgoTU2BQ+tydIaFgJW7g0GdLIpeEianLxAQ0BeXKG+keOKqW/kxRXom92m4JlvQnJvKS3DSLk3SppNwUOYIgsKkLQqYaA1TZIGrZEXV6g1Q8JAa+TNFTRMpkq5t1YYikzCQ1tkEh6iyJsrkLHibIEoMgkPGZNJeIgib65Axtz0FYri5N4gY1LujaLImyuMMSn3RlFkEh6NxaxFJuGhX5zcG2XMyb1RFHlzBTLm5N5aYd6XN1dYjEm5N+gXKfdGbXHib9D7Vd5jYd4Pib/9x3f/cF15cwX+eif3Rv0dvMGCBhLWoNxbK2z1yJWWk6nbNSL3dhohQbk3yGpQ7g2yGpF7ayc0RK60nHIakHs793bwBgt7qIJyb/DFYOXeaJRJuTcYblG5N+iKqNwb9IWVe4Pffiv3Bl1u5d7g19/KvdHIshdXIGm2agZJs1UzGGlS7g36xsq9Qd9YuTdImpV7gyFg5d6ob+S8cmpNlXUm6BtbNYPWdEkatEbOK6fW2IsrzJop55VDa6atmkFrdlmZgdZIuTdqjb24AmFs1QySZi+uQBhbNYOkyZsrmaHIohmaK9Ws3FtmKFLuDaK4GUmUMTcjiaIUVwKCjLkZSRTFzUiijLkZSRRFyr1BxuTNFYaS5M0VxlhI7q0so+yuOAMZczOSKIqbkUQZk0UziCJvrkDGZNEM2iJvrmSS02pW7o3ZYuXemC1W/I1534q/nQxFb1bubWccSbk3iCKLZtDfQbk3NGq1ReXedrZ6RO7tNHQitbF8slhU7o2xGpV7Y6yG5N7yMQ0RubczB4Xk3k4dFJR7Yw9VVO6NvRi03BuMMls1g+EWlXtjrgjLvTFfaLk39u3Xcm/M5Vrujblcy72xTUZM7m35TBaTeyvLpMkhSTTSbNUMRtqUdSbmm5jc2/LxT8u9Md9ouTcIk2VlBsJYuTfoG3vXDMLYqhkkrcs6E4Sxcm+QNHvXjFmj5d6YNTG5t+XPWrNVM0iarZpBGHvXDJJm5d6gNbZqBq359i3w+PH93dPxCeOldeTz6htbXRbLEkOZSzbsazZ0WSRjNnRZJIMo+xJTZZEpKesGbZCybhClLjHVFplqrvgCbeiu+AJRxhJTY5Gp6cohzIaQjFtbRkkrTM3Fd21Ivm0s25BdgQKiFJd8hyjVlQ7Q0OsWkW+7RjmZmt4igm3XSf2N/frhUCBHM5bcR0M629xiq29s9RTI9p85de6BxdLZYjmW3IesltjqkNUaKB2kYxpaINt/ymkPLHbq7RFL7rOHas7Y6ujF0LdN5vRRlPUtSZiNwezB3H5iZEUV16AvrOIa2mH0zd4dSQzGKq5Bl3dJGgxgO/QE+sYqrjGYmOLa6smlxxTXyjLMLpPtEMbeHYEwVnENhkCVpEEYmwWHpNm7IxDGKq5B0qYkjcHs9u4IhLF3R5hvtOIahMkSBpJm745Aa+zdEWiNVVyDMF1aA0mzimvQmilhmDVScq1OhpIcymAoa4nxtGiDuzVCbfj2yf90//Pl4ZeHD8//CxLwB9bc3jz99vFlxbv7j5+ebg5hawg2W9i25LEruAFOVFKEjXrMTUKh0edE2CCKFGGraCZqlyJsFU1b6wc9ciSkuwzpg545AtssbFkrdZ0+ScdcVlXAgU9SWXsbzMXYdjdMqA1DFT2oLW42CrTlqltufdzFF0u+Gp3wZWzC7ajt7SFgWh93UU/Ggfca6Fuv83ipLGZIHBHxysyPXlee5JeEyVroVDlxgcZOW7OiLVrR15Zf/fVjbfmx+Otn4BvxVZrnwA7wkThofEO43eKmJTrTtkZnqANuWz5eNNkHS2HWnv+0L5JVQzGQko2BFsPdLO7amyItvk7b2pviJYu8FAwyCwBhuswCoIkVvadQi1/tzIbg6b+x1Z3QOrXBtcXVxvzghNYpSnNnSTSnqstppzRy5Rn/ZCRb7/JUf7buQSscaeeDURqaZNpeiZ9Dzw6nB0FRcuzMyd4aoQmmc/WtEWqB21aftNEC56l+HJ6yak95GRKGveiGrNpDa+YWPFGxUJ2yWk9h5J01SlZeI+vqvdHBszDlXTX42ZlS4REGcEjb7fpgw14gU1bp4Rt9yrtqNMLm4pn2NMKOfDK2LXgKRI/h2OTdNEbSCM1CTXnxpTK2LE9J0JoiYVAAj5Ck21V4VWZMcyhICneEJN3SKyjHtgyHUpkt05Zmy3kC48Onp5MMxkibrc0GcZM7JjJWQ7JveRklu4MWe6ZCsm9lNdpDsm91GUUe3yFj3RZpg7E9bJU2iOtuwlU0s2Hs7iYcRUnucMsiZHc34qgt2aGwZ2qX6YDCbAncuqmHeaSxt2CZDfpWatjATcguu/epd6WGDfyUZalhQ2GShGG+ybJ7n8JkeZI+mYM0ss0EsNjKUrXm/Pfbsz/8/VKnBr7Gsz37Qxg53QG+yIvs0KcwNhcAYfZgpZR9S4rUp4GBvNhn91daZmerV3eQzQxlset2cfUekiehDI2QpAdd3am2Q4aqU22nKClWA2RM1bVqe1/87XI7DlH+/Sy/7JPv3zw+ffh42G3417rfHPken959/v83h+e9GtmLH4rnjquOuh/vfvm7DsSXG8jXv/qr9sOT1sNR7X4cxo7djyNNyVFtXY5FUVusy/U1sg5651Z7BXMoVdF23SwYBLZ7dUisnNJGYWwND0ah3cdDmMVuurRI1tDNicGYm7o7MQbcN7n5Zn7rSe6Okbr26FKLEoZJl1fxEkMpDmVjKNVWlbZAW+zowTMApM5NcqLUxZL41VIXqwMWCbvY07cY7CPZQkzMqOAxAhql7+LFjCru9AKNqw6FPWNXXX/8StaJ7tYYPXAaSsdLjWA3HCTXnh0Yu6s9fWPNipmCRxP46/fgtR746xd7+Obir4/es4G/vgZ3yvDXS00NCuP6d8pkKK5/pwyGMtWmhNkyQ+NY8yu27IcoSe5BDnD+/ss2Q/NZ6zKFrlmHhcPcitzxvEbh+Ylvbm5q47cctkOUphpNKIq7U09RhkOB8TDXNyfl8L74tAJ78DmJCewtPyhWYI/CZJvoLBHljBlT3OvLzpJ5QMpi7JrtNVCMxR7DHRZXVvwLkqyZSVb8Icy+2fxnjMU92fRnEFfmCymtWcKwR3x3CcOCLgXN3fUIlMZsaaEqPl29y6TntziN7L32oVraqYfkQQPdRpl5k9nP1zg8f2SzGwZPjZMHDXQjbWabHzywhoRhLu4I0Jh1LkFIPeXGw8MXRg5kDsvh5eOZ5URLyovMIBZ0d3OGegSvd6/slVbkREvo5iJvB1PSZIcBDIEie4Phc16q3nr3SDKoyJYDGhNd74l7KFFTht4Ut9DnITQMN+2r4Vll6wH0X3VD8UphKLtDqQwl231r6NrYrE4XiFpXHQr0VLP71iCH3abMg7hOO6ig6zqzOiUhiNI2mzOPcdic4hCMzLY7FPaUNdfbTG1xPQjUlkB7cznsDZixBsa6/ItlizOlf+hkdg1lONqMdRRA+ro9bjD6Qu2K1ztndCtwhtoVt7EMk3VOvkZSNb3IpDV0VpUw6NLd7LLjgVrTJQx8kEboHlnJbPXpdsOoDXcudiSWNRuGkx+hNjj5EYqSQ7fWKFNOdoTa4GRHKEoL3VqjTHW3w4M2DNd7AVGm2+ExlK/G7tId3uEFtrnajdgWf+kud3YshFa7EseiFbYbAVpR9f40dN9lzhbrGaX0+TaEoF1D7/GCwLYzAQXM5+ukMg0bMvBlEHCsUZeFzMvUWbnjowxm+YJKEMe+QihOlcUaiiOHiGIcqU+KcWzLEsWxbwaIk2wd4QDn7e3N3dPl15e77u8/XT4+3N2/rPL+3fNyz//uH+8eny6PT999un//4d3Pd/e/PP+3/708PH4+go9U+tx7y7PVUv744/8A1KowRA==
If you need a guaranteed unloading speed without downtime, for example when building a plant according to the main bus (opens new window) (Main Bus
) pattern, you can connect both sides of the unloading using underground conveyors, connecting end manipulators on each side. Thus, two manipulators will unload resources on each lane (lane) of the conveyor, cooperating with each other. To guarantee the filling of one lane of the express conveyor, three batch manipulators are needed, so two or more railway stations (Train stop
) should be installed in a row, organizing end-to-end unloading. Also, to speed up the arrival of the next train for unloading, you can put traffic lights between each car at the unloading station. The following drawing allows you to organize the unloading of 12 full express belts.
0eNqtXdtuXDcS/BVjnqWAlyab9H/s08JYyPbAO1hZEnRZJDD87zsjO/FRRI6KVfsUO5a6T1/YJOvU6f62+3j9tL+7P9w87t5/233eP3y6P9w9Hm5vdu93Mb3b/353v394ePd4f3XzcHd7//ju4/768WF3sTt8ur152L3/57fdw+HLzdX16dcf/7jbH3/v8Lj/evyJm6uvp7/9FHH5l4jLk4jd96OIm8/733fv4/eLN4XcXx2uN7+Svn+42O1vHg+Ph/2Ph3j+yx//unn6+nF/f5T5128+HPUevvz78fJZxMXu7vbh8MO+b7ujpN79YvfH7v1l9f799CB/E5RQQTGE85Iy8Ug+EmTMIw0llbeCNHi28Fv5U6b9Vo4h+Xy433/68SM20FEJHfGMjjrQ4a90PB3z5P7L/e3xv1Mt6ZyWiz/z8Pbp8e7plK6vtLZNHK4+/efycPOwv388/stAVz6jKw1k9xeZf/lzdQwEl1+Cj38cBTmGzXPu99eXn/69fxg6xF4+5EhWXLC5LNocf621r/vPh6evl/vr48/fHz5d3t1e79944vKs4mZ/XA8fb5/uT1Uh1ouY44eRKmYxjj1iCx5pi3kdCxq6/nbo6rJ3+3nvpouUjw6uQwczS/JYryK0Jg83kyUZ8TV5VBZWw9FXpK8u+RQ4l6llLEWs1hxVvV1sUsIy9ijs7WqT8mLKvpQ6rgipXUSzUc4mWwnvanVLhdm2x36psJPfrgvJV6xerWCprYfwfNk51Rxrw/itLM+4uvgztzyjWNFyXD8/tY0HM3JGy0lTkiAHZkJJO6NkaIlpR1pMiXhuzpC7xINzHi/37JpYLNRNPZBnZifLnTuRJ6R+W1BtSoxNFjmbMmRTIq4GaZxYlglZkyQ1464ZmNGFE45lSSUuFnnoA+cuFtACtcYJhyqXdeLWMsmEEghZkwwtUb6TJGIHL4m8k0CRLJmUDoWymOyyzLisyFchagMplbzgQbWhuGwVtYWURloFldPSmRvfZInWwAib1I4ayfscFM2aSOmQV2tmbovDjaQac1uc+bQwwmbRruTVE6qMlb3YQpWxNvKyiT17ly+bzFblgTQKcplH2ShmM3Hmcuu/dAbkSuhZu0FHSIlpN2hMSdEswdxVNUsClG+uXdMjpKRpSjB3de3SDrmrBU1JHBf5Rl5gA7JNtqReyiP15i9zNkXIJlNtCpRNhbi/z2JeCVlhIsu56zqWP40TjgWyE1hAHPmgB+66Dq37HjnhUHnsibi/T7KqZ0LWJKu6frENxFmkF/K2jkWyktKxUOqvdCPjMvb2ChWA3uU7OVVtjyJIs6DSczw1y3ZFzi7qBXCcUVcyIy3MpLEveAPm80KKB0NaGUggjj3hzDV+GqXGSJtGqZP3dqhGxhhI8RETH8krNPj0Sb5DM/tWjJk0C/SayWZFyizmsvtr5daG3N5iZG679ZeWjmlxCed4rWUcqabZ0jAtXbMFi0sKEgoBxiVpDA4wLilptmBxSRrMhcZFI3GgcdFYHKjHNBrHsy1DuSrneZBXyPkucazn19rGDGCC9/wciCHHlyA+T/294WGtk5N/5srf6bMx14ucy5ignChkAvRzJvjPtY8dwxGgwbKWCQb0PIYKBXoYw2NWnEjmZhfZJkRz+dZ8bqHOTzaZZEKjcSGp0GB+msyFJsubMWToaQUy5jI8TV/L3P0S9bkpbOvR8vjxecCJrntcHn24PIxhRU8qkTG06Lm3ydfH4AIyiRg9LEbHAB5351zS2NMkOxq0p8j0aK7Olajd4Bw6KxbmdL1ZHBXTkjVbKhYp025woMeKdoMDPSberEEt4s3asbg07W4FaunaPRHLsRo0W7C41KjZgmVyTdo9EdSSNS1gXEy7jdbZt4VFk4vlbq3qnbdSh8Iq37Wd00vetSt03qvc1xKvbRlKd+byPUsvj4Qwnwkjb9aYVz1z0kGvGnFv97EbmJv1NECVEDYNEPflA1hEnPv0ASyw3uXrvlPfPQdZb6X0RhJmwNzZyG8nwFxomUQxsNXaTEYxuI2jFdIurMa1KtvFbcTNGTxlVrRaY6TNqlbrJDqD+bwHUjyWqj0yOMx4Z+mJRE6wRdszA/PMwtaZryOmKbXG71reXZYIXnG52nYnxYOBazJERO2NXf6YgtobU2AuwZsaCbVXSoG5BOczWoZtHELStBTMlqzBbKDHTIPZQFtEagkYl6p5rGBaRAAMtEWkloC2iNQSLPoxaLZgmRxFagnmsShSS0CPae1BUI+Z5jFQi0gtAT1WNS3Yqoxaw5A6azvEEMm2csHc7Sp0V6ieWkntFlK5Xl6J+9qqYi2sUuKkF0w60UFkml7JCGHTpmZcyxDUq5WTDnrVCchw4oZGoHzTABFdQqYBytwHUmAJzNwXUmCJyizGBT58lpFBpm9ZyvIXVudK7xm95CdWaLR07Iur7NlJTA8rQrnJdnE7Jc0kw8qfMR1FpkXLIiNtVrWMbCEChpTmi4GeZfpQT3YWY9qKzP1KEcGmMWeJYFhBsUaKx8o/TfvCnv7/QPuidpdCfmYFeq3In1lxmxfFANsohdpXJooBtin0GdNSNC0Ji1TVgEnQY65pAT3WNDAvYx7rmhbMYxQDrKx6rIrsTyzHGAbYFszD4sIwwLbAJOgx07SAHiuax8Ac07oIoXFxDTIE49I0W0CPdc0WLPoeNGAS85hHTQvmMaZ7WP/bjjyUmzW5WO662kuoUh0nkxcOKIQ6LyaXeaCZs8o5qzJmVSMQy2l6dULYpOdjaoEDKDG7GzdTBsyVlgj4M4/dQPQfmgaoGSFsGqDCAZRYOW+Vk46VqKZ/IMm0ukyN/UASdJpOBGWaXaY1nlhYjVaX+wqRO8oaqWx5S+lZtovbU7qRdmHFtRcGsJzVmV4ZabMSuEQ3C8uVf61x2PK21TsDfw53lhzInkRYLcohMnjoJGx5ocPX21tXDpk0HRuistTyK4ZlzxZSPPj0VYYhmb0xB5f1ZkovcQn2TZJBzXQzxQDbxA5qo5wpBlg8o2WYIRQDLK56jGKAhTNaxrZkDTAGtYjgNxj9ogHGYPRF8BuMvmuAMeixpkG5oC1d04LZQjUWs9VMphqL+bItWvt81JasAcbYekli6wMsx5jGYlsoF7SlalAuGH3XbAE9JrY+AHOsa4AxFpcsgt+Yx5ixkD2ueiyTfE+oX26mmGkvYFyq9XLeMNPwJnOT3rd5Qzcj+sLFcU+xbPGihGFjuJyJ3vo1zJ6ea66PBrgR2GscPyjDFp1ZbSRbFFs0FpUuc4OMOOXYc6tA68esGPbRypZkuJHpC5yNHD+H+lL/gpqrEcZ+QY2tjA1DbaHN3KwGGfVZ9HR1sLgZaHqX2szFceOz06rLJV2U6MP18WKOJIzWjWtRoeC0mbs3VDOmEdyoXhxdfOovV1Ic+4KF3LA1W1jIDRRfZGyKqnQM0WyDTZWGTZZ2TUvHtDQJNSodi5SGs4Eeo4hmYdVjVcPZUFu0r6xRLRrOhnpMw9lKw4akazgbmMkU0awsx8U1LaAtGskUjYtGMgVzjCGabbApVEuUUCNUi0YyBePiGskUzGRxUCWYyeKkSjQuGskU9ZhGMkWjrw2rROOi4Wygx8RxlWXS9zk3DVkDI9E4ZK1ArbwzOZ/y9bOPpauk0oGPkDt5K6rezuklELfSZunlhLBprnLjK9Es6px0LIt6WAcHy7Dxe+5xHRycBoiZWDkNUM8U0ggWkc6N3gDLeC8qpHhunc8v2uwUS9RpMt+0dMoskm+KRov8jBpbrRbkgRxc0bcQSbs6ZleS7eqcXcxky1mdsWCMtDaTRg6yRHOpkuLBkDoB9Y53Fgvkx9nYorXQCSR5GrYYGGmzlFoaZBlW9y7TB1lSZdhilvU2Si+JiqPuJImoYKJGEfyG5jlYFMFvx7Q0DTAGbekaYIxpSRrJFPQYRTQLy1qSBhiDHssaYAxqMU0L1FDXktZhAY2L1mIU1SKC36DHRPC7Ylo0kimYY1kEv0EtIviNeSyL4DeWY1kEv7Ecy1qLUTQuIvgNekwEv0EtGskUzTER/AajL4LfWPRNBL8n3fDNRPAbi4SR4Dc0ysBMpZUWajiFmXFWVcwqGfx2zioG/K6z9GLA72mukuA3mEUk+I1FszDg93DahhUG/J4FqDDg9yxAhQS/sSJSSPAbK+OF7CKKPnyVQWhmJIUVHfx2Si8LfoPRYsFvbLVWHfzmtpQqd1sgq34luy2AxbVS4PeszlQK/J6VwMqC32AuseA36FkK/B7vLJUFv7FFWynwe5YEToHfsyRwFvzGyr/r4DdVhj2TKDEWUTfZLGpXcxb8BqMlgt/QzBBzEfwumBYR/AZtEcFvTEsTwW/MY00Ev0EtIvMb1CIyv8G4iMxv0BaR+Q3aIoLfoC0i+A3aonVYKFBHcGsi8xuzpYvgN2ZLF8FvLPpd67CAekzrsFAM85gIfoNx0TosoLZoHRbQuIjgN5hjIvgNekwEvyFbShDB78nYiBKiCrFSE1BKIOFwaExH2RDN4G4HxWYuIqZqzf2ttE74mZGvPpQvoV94Ch+GCrlBW6ijiUFbZeIZYtDW3M1d6EcwcvMpcM8dKqIfXZ2Gro5ciwWs/pcYZRiTGc9RIjmqCzWLHEcPJmiUmymQBW5DTsO7HUxrUGSakE5Xx4ZzRrQjGFahH206Tp/fH5eHjZcH2WMBjTTTm3RSixIFrM3cnaLS7WBYjY4RPDVR8FSHrk7kNHpwzSYWUgPF65AaVekYatkWjYJGOJQkImsJ0+IaggPaIvZUAG0RkTXMliz2VMBsoahladkWEVkDtYjIGugxkVYKaikaggNqEXsqgFq03qVo9EVkDdSiTa4vUM/pYiKyhsXFRGQN85iJtFLQlqzhRKAWsadCwqIv0krBHBNppWD0XUOjQC0isgbGpWuYFxaXIiJrk5EBpcjIGjVcoxQSWYMmQJQiE00TZxVJNE2YVYWA+KaBZ9ijeSaMa1aK2k3SScFc6QQ4OBwWUmogwMGZTyvDHp1FuyYO9MNKYCXppFjpq0ZCe+DD680UmIkapepE00TpddKdYLTkafVk7a0s0xQrQh5I8VgVcp1Pym3EnhjMdlZnnKKPzkqgG4nFgj5n+aRgxlQG6h3vLO4M1Dv1a2OkTWPeSRgXq8+NnMAF1qsWZRiXKv8tkeg06DW9mQK1uzS2mQIYLRH8hkZrlCaC3wHT4hpgDNoi0kpBLWJDYcxjXaSVglqiBuViHutiTwXQFrGnAqhFpJWCHisalAvaItJKQVtE8Bu0RQS/QVu6BuVCWipDLdtqCZgWbXAXaotIKwVtyRqUC2oRwW/QYyL4Ddoi0kqhMVQ1iOB3wLSI4DcYFxH8nozeqFGEu7FIRBn8pkbYVKrD2gu9kdNLNh+OyH23RhL8Dph0BvyephcDfseZMBL8Br1Kgt+gVxnwezh7pyYG/J75NDHg9yzaiQS/sSKSSPAbK+MkyyxEqFZM7/E1sV0WQKfp4HegzGLBbzBajQSJsVowoJitgsTchpVZ8BurQlkHv7kNMVPg96xoZQr8nlWtzILfWC5lFvwGQ0qB3+OdJVPg99SvFPg9jTkLfmN10ljwG6tXFkm0FhTPYtygc3SMm9obTWd+U5vXgAH2cHd9eByfNU7vTZ6VGTS1pZoGelvHtPiSDWnRBg3sRm3QmN6glgHj65ynbM1TRWN4ozZoDG9US17yVF30lElQLWqDBm6jWuqSp9qip1yCaFEbmgSeolr6iqf6Yq2lJmO2VRuoyZjLFZ2ZjNmXay4zGbOfq7nDEwUzGXOrZTL/oVa1RahRI1oqxTF7obdzep2CAg2aUlJr46R3THpfxwZtMqqjeiCEzbJoofXZFgoE7fbEScdi9oIYBgKN1sdusHVscB6gQgibBqhSUCBYnNw56Q2TTvYBRR++q4CfMUNlaguy3kbpjaQ7sWg1eTgWWdkb2QgBLEJNboRA7pStkHZh5a8xnRGmRas5I21WtRrZ8QANaSfFY57Fh1VugMbJzoJOq3wBDU6j1BMjbRalnjkkEKzP3UjxWL0iJ1ZGtQz3Kuultp3uHPKJRquR4sFodQ0KhCZlOMPo2mpxTAvF8diCgq+teTsBfEDxOoe0xEWjsoZAggGipklvUULOdVr7UIO6fXtYg8LyYoCccl05l92I67QhWmheaEO0QC0xUC400YVRa39gUONq5xhgWxiTWlpxDSn3taQfdDE7J70vStc6i6JZRyFmrauB0TihqAs1Tijqwr7e1tImwwN8wypb70T50y2vWiR6Shfe44ehwkgAVT5+9iS0dxw9+8kbP7po2vjZM9HNb+56U/rvjZ8//WxNWef+L8x9bhKAqrS0G1tgp+6B4yfXxgQY1JTYmWZmWy0F0yK+4oaaIXrWvucCPZajeow1BlLyzO3x+Zx9wFYi9jtDQ6f1OwPTMItvxUEt2idfaBpqkwRQLeINAPSY1u/MoA6bbtwNoIoLyKJ6NjcCMnKxIxoYOVu7AWzOz4ZETJsxYIblhXgTALOvaodlMB7iwR/0WCMOteNToTENjCeyiogAQm3gnKG6bbVA3T68cLt9PGcNUDUWuW+bzEmIUaYd0EDXFe3EkrA0qNqJBdSifdiNprS4y0M9RLyIOB/UhcdrUKHSNF84Z47nA3YchIVheVDF3RzLA4YVtz2ogFrEXR1q7eJV3NWxWlO1T7xt0gTJKzFixPJYVGN22Iks8U0e9C2Ru7iPTz7VcY/qnvr6+YE91ZP2FQH0cYy7+A4P1GLcay7o8393cecGbajclxABs8HV90yR2n8G8z6hrxbAyIh7N+a7pjVlMehbQm9aUxawiDWtKQtqi9aUxSbfIXoz9b1VoLK4FVXvmRJ9Tq/WpxzNb/F2jq3VJr6WA235VRFOp4qby4fH27vhW7m/nv5VPjw8Xv34824YFJyLtzkEDb/59Q0V7+PhC/DeJmyf+tVbs9kbsw1H75xTTi/MeK9k5jw3cYt2Ic/Qxzbei8iZyo0qJlTvtXhO61CLS4eWDFH0vDfxrRPrwy7BHJh1LajknHPWTU/mLazd2dfSvoUkIhGkUZmizaBGcQeDphqlngtItRpoj/pUOxZgdaptyHwwjyZPyOgtEI2e8pAl3zbEPJxlMn2wGIndcfZkScIhMsRvaoskuj+pvdkx6eIOD7FfG0WmC2e0DHeJWLWd1jFbXORZDPQApYYh022NA5Otq8ZV5hjRUpDeMIDWpSihFGAapiTyCLJzPswikYDVaxIqg3q1SHgJmiEaXg8W3eTqIckZFKOlRnWZQH3XtWMK5rtMXPrzkK/ZMnUWmMgSzwIFMz5rWgzTYuJ7kGxUIcniKQH0YVWto2aft6wNH0ZjJx4TQC1d04JFyriWVKh0be4C6CmKZmdntAzPpNTg0bKsRdzoQY8V9fjEzDlv1CRSXzbONS0Ql7BRfenaGVvGWrp2VsKWKUPaa33VFoa015e3nqL1rgJzrBC9b/IYLXkxYBQ+IU1kabOUcsaMr1TTypww6c5hMeCzN6pZJfrs4p6N2UC1msvLWiJ3MsA8VZP6tiFT59+a1RcCpF6jqCGoN4t2agAzQty+QS1ONbREPdVUWICMf1dfnnB6PXBwBOZNF7d0LCNetLFDN9shebI58+J+Jsu0zTZixosXdlCL+Joe1CK+pge1NG17BLV07dKJaaHYeGVZi9YgA9WisfFQLRobD9Wi8edRLUUrr6CWSpTXIZepNWfK61HWh4vd4XH/9UQNu37a390fbk62XV8djTz+v388PF1dv3u6ub69+ny4+XL8l//u7x9+gCgtmvfkNfdazL5//x+qkFP9
# Loading items
When loading items, the more intermediate chests and manipulators, the better. Try to organize loading from both sides of the train if possible. It is important to evenly distribute the supply of resources to each chest with a manipulator, especially at resource outposts. This will allow you to start loading the newly arrived train from all the chests, which can increase the loading speed. The following blueprints with combinators distribute the load of intermediate chests evenly.
0eNrlXd1u47wRfZWFru2v4o9EMhcf8F30okD3rnfFwnAcJRHgP0jyosEiD9D36JP1SUrZTuxIHGXm7AJF65vdjSMfjs5wSB7OkPsju18fqn1Tb7vs7kdWr3bbNrv7+4+srZ+2y3X/Wfeyr7K7rO6qTTbLtstN/1PXLLftftd08/tq3WWvs6zePlT/yO7U6+zTLzfLen31Ff36bZZV267u6urU+PGHl8X2sLmvmoj5/s02tls/PXfzI8Qs2+/a+K3dtm8qInlVzLKX7G5uw2tvxwBHf7BgfrYygWJ+e8NxvxUpJCO3yKVw7DvO47Lt5vW2rZou/iKBU77bFP8VyXuom2p1ekInkIt35E31UB8282odH2/q1Xy/W1epBtyHl45fr+J73e8OTe8Tr74lGimvaKiq9Xz1XLXdNPbJ+NjNtifr2/4Z1f/RVA/Xzq/jT67vGU9NVW2Hv1Gx07ymGHV8Rv0Eo0cTu2a3XtxXz8vv9a7pv7aqm9Wh7hbxdw/vWI9103aLUZf/Xjfd4di93ig6PjGvvlfNS/dcb5/6EGirHov/7b9kR/Y2+2Wz7Hqjsn//81/ZK5/Skqa0ICj1VNQnOA00p2UCOsjjKBmPKkcCyXICSSkEumBBa3n8FJL46V1KePvaG8dHDeF9ZeRGWpGRdirKP1ppqT6qLBL39nbivvcvHfgDlkuK5QJhubghljXNsh2w7CiSS2i8LdIrFeUgNMsZvZVgZtA53R+S2AHCtmkWdC5AUzIWtBJgW9nkozWEPWLYprCNALuQeU9fhuNDXOQ3T80u/s1AH7ESgd40xHZ/6JXGuLHLqNTu13WXHpD01eTMeAFBEGon7DCOZe/VNMXAlIRiEHaUAGGzuDCCwDTCIcQIAtMo2dLNaAibGJ6MkYSLyQccnwNkd+iICDGW0+N6K4ggTGEWAga0rMcZQfQZI8RmRZ8pJNFnBNFnrLAXBwib6GlWEm+lLJYtsE9jkkZqRHIZTtxag0BrFrSVCyUtEUqW3g6xwyW8p/ZHbCG30oispHcYrOWKTlsiQsPcjtCwBV9oWEppWGizTN8Qy/TWhB1uoHiyL2P7Z5o15AYI26QnhyKHNJcm0BSEZjjvXWhIz7E4LQyETXHKWnrpyyLGMCwULL20Fr59CWHzvOYgNcuz20NqlocdRGrWTrDCWKyXOaidDa2dJ1qTROnEiii11C41JKJZPilFkkk7jk/IHYbSChW7ZrwAb9ciSAaGsoRUKTGAlw5CIwbC0oMaFwuiALamkdZcztKUWtI/nII0sOEEptMQNiswnWwvQ3OGLzIwnRWKeQ7xhegF7E+NLK4EG9NIYw4S/6y53XkIm9elgDSxSmayoTSx4qh/r36i4CIfF1wUM+VdqubCA0ljJRHw3ggEPF00YBBtqW5HW3o6VRgF+5BmSsJ7CwnAnDNL+ALCVun535eQHMw5A4R3ELZiYXtIDvKwA4TN4iTkQuGpGJgKEocsLoKGsHlcGF6GkLI3FR3BgqIwR1aYoQBbU1BrJShBc2BVEpyosZJuTDMa86BsVMibBbCxiTejnaZyyfadl80FKldQEpgV+irXEDjTclbwX0lAxbHYQtqYSUcBgec8cCy3yrTcQeBMR3qh2Ms5FgcWqBX1DoVlWXkcKwWB83rHh5JUntQyyVp7pZBMqwm8klykbt54HrY8QXq2mlsjqOg8rtejlT9Zi6nk1fdnCtiGejrJOCoaVTaQliJ5xkRX+P8tG50o1I5yfDZ2C0G0R4j2t0T0xPkHNZLdhSaZhhKvY6qTg7CkWvUKPLBmUQ2lZceWp8E1BM60HErMjsHTnFsInElLIdPicUplWAxlarld0EHgTK69RI4fQZMwAUknMwmQFKZeBDAXXGFqPsEvRxhKilX1x/VSEg5MvU5ZT2poZSyiapk9UVLEqqUjraSKVQfhMtU4pHCa9qlHJCcZmgZMv56Z/bRTiMpYjdBvFsq8MqeCq9pWUXoUDH0LZmMTb8NqzmLpTGxosAWihJlDgy3lStiljyY6RK061jBgPYJd8rCDXGA62fHUieNyanRCtcjJY4m53NJSZqmaqLcNQ0sdKYULhSi0GzqffvQyeVB1tD3iFcm0Rph2N8R0v2FDMq34uw6Sgtkrucq6IEAVUIJ77MfkZCwqpM1p8LTlUMJ7TEvacgfJVSYtUMqb69AACauSWGmWmE5zFJxiSdOrCY/xyiWmv3h8lgYCJwnA5BbT1gIC58VbicktpuUOAmda7iEtx7Q8QOA8y10OyUae5Q46v8u1XCPHV7ngBlKQvNHZWchyJucFZDkTHJBUxKUWkKTiXcrjIEnFu0vIAZJKduOPnxAqcWk9XD6TksoDkkp27c9EAWQvoIaWRq+8LbqPH4weCMMHqDeDJNgtXWLjRMKAPGqsPCTBbulSJj8hdr36LAZo4jFFxro/QWElx4Z5oxCmyHhXCnlg/jFpgh1e7W9M6nrFmc7zb8mmLtPRsqm7503VxVZir7uvt8del2rr3FLqkEgqlC7Al2hqkXBarp6vAqm/TLRb9jeL9jVLu30Vw+RoRvan+NXTNrIo2qjQIgKon9xmmZ54go6gIGc9UKzr/xLrNu9LQn+W9z9+Pe99PTZrrr4uYudGrEojXWb9N4I+C6L3gFXMMHqs13F2I+7Ppej9eppEDr3D9CfX6E646B1DXd+rK/Ib3yuXef2hWtUPVcMcj3ImkWfUXxMWl3jIB7P170A0/PUEuX9ZHPlePDa7zeKUorrrmkMlmf37IwTD+Xw6bshiwKsTDjyXBGHf/iUu+QNZZX1NrrKgcQzyHDHIhaHvBou1MFq+Dd2tLu7m9o607y3o+/x/0PdIzH79pZ5PDZNTbjSfdRTNHXYL8WSo07XZ4cNWab2dt91un7wI/QzjRrUAqX7SVtG33W5xxMzuHpfrtpqdWlj0Lewrgev/duov3QmtXazrTX321xnz/Jlo7JZ5WiciMBrVvS2nklUJV+eZ2G5KFw5cHVbiXliviXvfVJCfodbEVaqXNdl9/cQQPu9oA9FDHHDWufweOR1lWhTSx/9m4O7qvzSYZetlVI/xsz8vm/XLl6cI+2W9Wz5Exf+lqdpoyapq42Pf47rttFb3yrqgXWlCWVj7+vofqk3vWQ==
0eNrlXc1uI0cOfpVAZznbRdbvHBbIcYHNbW+LgSHbPTPC2pIhyUEGgR9g32OfbJ9kuyVnZHc3y+SnAMFOXyaZH7OqSVbVx69I1m+Lm/un9nG33hwWH35brG+3m/3iwz9/W+zXnzer+/7PDl8f28WHxfrQPiyWi83qof/dp9X+cHXYrTb7x+3ucHXT3h8Wz8vFenPX/rr44J6X70rYrdb3r36Enj8uF+3msD6s29MMjr/5er15erhpd53Mbz+578Zdf/5yuDqKWC4et/vup7abfqhOUnZhufjaT6KfxUAKvZKyuv3X1Xqzb3eH7m8mxLgfT4L4x9DN8269a29Pfx+Xi05Ph932/vqm/bL6Zb3d9T90u97dPq0P193f3X2T9Gm92x+uR7r4Zb07PK3uz+o4/Yur9pd29/XwZb353Otm3/ay9D/9t/6HbrcPj6vd6tBPavHff/9n8Xz8w83mNP19L8f1v+zau9eKXne/y70VPu/adjP8G3LPH5+nNMpVn5hQayOp1U9I96h00kgPb6U/da64+7zbdv8V5TtJfucUL9bZPh0en/rlMBovvvH+qxe7TozCr0aZkJMMXsyiF08Izq8Et+391e2Xdj+pBnojVeldJHtXELyrfJvQQ3u3fnq4au+7gXbr26vH7X1bm9nJQJu22ylutk+7fk9xvIzx48QorrFuLjw1WecMdomSXWhKMmkNkxDDuCBahkmwjGOzaZJsmrJMzaRlzBtAsfi7CwaLZdFi3+154OQly9KSdRE1GalMluybdn5/015vhD3bZePn0OsDbkpgQQWq9EMNAHHCfCAO+RrGWb718SL4ODlAyX5GSpYPFBromBpJx4Riv6DBfgQDV68S761QKpigVFPDUm817KOk4WCdozfN0YlzzEMn8NIUIwB1g2qfREC0V0nOVjQ5eU5QAdCk16BJbgDJQSXZWXGqyes51nDqW5cKYsBqxtImr+cKlh6eL04C18wohvLToINhHB0EgQhy9vNBziwjZzfcoFnaoDkCSg4zUrKrhSeD/YAlJScUj0tLA44YpMVbALQZ54M2vXwsdDhpAIYkuOmRuCnNSMly3NSFSW+VHEUlOxR0RxVbDIcMSSWeAciYNJDRm6OFZMEkXo4WfBzaToLiPgBfH1VfH61fH02IrMjbgx9uD+LXJyuoT5NiMgC9kwZ6eyRciBrJobECZpNzBhkphSFgjhIhE8yBh8mFevCgBfVB2vwCAWguzQfNBXmX6vT/VslJiu4CA0qOM1JyBTIPj4IghacBjibjNMINARWYBIERxeCSQHOU4CwAIMAxg6RR8y0DWeYbEbSc54OWo4yW/TAkydJeFmG0XDRwNhKe/lCg9AeYcs8anBLNIDpbMECsgOghjMzS5WhEQHRWrcgIp0qU6fv4JTmaupOPZihcJlWBQGGdIxQrGDQ5QpKP0DBc20VinVIDp08UIbOls9dkdktyACTK84FEUY4Pw/BWoSTJnoSnJRQgLSHBNwRFs5skGOFlIWUtoPipCAJhhKdTAMwKq3brlFF16MTD6E8wX25QgYL5MpJB0eOB2aTiyveIcYQgpUAtI/nO/f/MRstJzlEY39ZKqC7DwHbs0VNIPcNp0GNbTso3J4K8zFurZRkxxRF0lk7YjKSCTOwYU6KT+fud6ftlijMP7ykdS+FgzogCnEoBxVxdMVleUZDMkrGNpkB9QZKrx18/KdqcEWIzf5HvJwuPzC8lAxQ2z9K0SIu8FcbhBV+RDpwC40bdSi0wUXg02ZREJMdiwq++2yOyyJtX5zJD75UuaEpC1NzMSM3yFVOJ2tuPAtPIR1VPSYSz1aUF55oGjX1kkQ4W2Ugiz4dC++vjrt3vNTE9Dc7ddzlR11ixI7Hp3HSNR0M3WTcBFilacBDO7x/v14fp7YEs0NY15kDem7C5a8xrLhgHMC/BZEL/zpkXZDQd2s45+AuUA9jZN8q1cPf9devYPmSxbg7m8jfKRsWZV3IxDhDNauLGrCZ7TRg7hfnlojBzVRg3tl3bXCXGzjYANeoNl7/t3qSwOFkXO9tiVWcuDGIyqobhL9Dt6G+Kg9S03Iz6EDiS72TcqMDJiTmLjgKiaZqRpis59G6UHikSzY4iTFGSbs0keADWDQDRa7qaZSpmgtFWwF+panXjsqOYxKL+BlGCrtZeXxxGb7WrVkKouHLR8szuTYGYjgydbgfBjFCWpDqj2COydc0mOJiZRpu3cq5465DscEnsNMDRPFGbR1VSx92owqjIrTISzFoKHWAcZ4RPm1PrikohphtVrLhUROMVRNM0J03HiqaHpd5Fut9wvoFXidRqw1xvRM17C89cY0TNu7NkmL0URXpYpPjhOOmnwwfeQAGeoYdGcIJnLioj6+f6jU/0mrkWO60UahHi++xJaGCGVId+g7vgm8bRgYKeCQQTjjr4FS5h/xj6JK/3uCysjulPCRd8Cr1m6CqTjxcQdIwQdMN6jRq91Vg2E3OlBjvjaikAMafZWqKB8TPtr+Y6Bfa2kyESPIBO55ERmmhGXbNcrIRsoxwuakSQFyHq089J06mi6VG6kNg5ycUAE2aqDlcu4pSfqpmQi/a0PFOrHlep0hoTRsclIKja3DfVBdtEueITwyQcck6caEHovaDrywhRh14n2979eRq3J0JoM527Joju8zrZ3sx02TwsVfb3FEYeJlJyyc4d2tZsqlByyY/y0eSJwm1KndCmxyWc5guSSIjmm1ELqN7msj+UkeOKNF+CaD4/J01XCNWURytPPC3ttUSN7STKeDagcgCCB9Cdd+aCEmre25wyngaoVArODyqVgvCDKsEJIPOiRnC+gPgKEJmXC5yNqLNCaezfNABS739FwRMGVc1/XSE45VGpJoa/QBd9DSstTCmPAaHUCp4rqNtBSrzgkzy0XEq6gPz0Mo9bGxJPHZRQYsGTBXW9kpvmgixOr+KIqXEXcMQecGhq8ERCpdoYYFxVgj1MiCpnHuABdD2ym4jwgDPqt3lkcdQ8IHkJblODJ86pmm6SuQDiPEDSDVDwRkUuIucCOYjMUrXOImfPg0u2twEq+Rhx1Hpf7PJGr6oqrC2FXtT+pknNqUPNktl/nByNzRxfmp42lBqnarJJzk5v2WznLPQWiY12yUW4v9CU7U7doDrb5Wnb4cxX1K2ZDA+g22McRP/MqDsnOQv9Q2JKPlGDd0qq7eYyziM8C0y3oxPOBykHwPkg3foiPF9MOQDODilVFOEBlF+QAPopaQQjuWRZIxjngnQ65+YCfgsDZuxg4kb5TXjqmO6kMb/tcv4CHR43v/VCybYS+JKMsaSjAIkvIYMS5lvpgiGhk8n+VIgRN3G5gLhJQJ4i+eYCGichSjQnebMxwDWnfLPxcPQMpPxpTgBzGjgbD8VhUriK4dIcij7CBJRunzcnhZ8HUKomIwxXntMjkZUHoZs4YrjExzg98j6SK3PSNFeeQBnFblnkEs2lAmeqL6u22gC3PHdFNwCZyTdTc+gjESu+L+tG5BuLqmbzRIttopVncUZ9j6k4caIeoUpVTXgpIO3SXdbJjma+sUwrICF8Y1HxjSGb+UabF1QyS2nUZ5aKvDMgzw85VTt3iuYHiIxrtpIH3FlAnfxI9gcbim33MhdCnAfQ7b8ReT5nwpe/46O0sr+PCiG4ES9XTIUQWV4w36+mKw9u0PgCVMzspAi3nleeJBFuRa9d9vDjQ9oB8L6Ryn0FbkivRAoJblCvNHJyAP1bNILpAhK1IClIZH484sw7K63hL/imDJF3KVyQl1h0KUr2NyeSDemkBBT5Fo3gfAFlm5XaKReMURCuMTdAka9mTZozyNnZFkimC1jSjLCkGeAY+9eT3/8UD1CAKiPgOWhKI+Aco+7MyAkgpmhGz29Qpbl4T0MN0DSJ4WdGyFZq5qRpV9F00pOt5gKDbwwdqboRU4E5Rmp0A5jz78j0kMKRPxXphFHgIrYNo2LmKsnZJiqXmvf+Mlh9LE8UeRidVN1eqSD0IjU62cFKAZKbVkAE2C9SdaOlgtCL5HSyzfSibSkc+Q89s1bEXaeYn3S0LQVuKjxoGR1ELDWP5AZuYqbbHrmBOUbd9sgN8kw5zeiljiMLriamjp4l+ApCtpKbk6blO6p+axlo2jtR03B6o3ZVBpRA065KmGPUfgHMMWq/IKMPnZDwaAi/KgxB3mh5mfh7oTM7uEGeDuOw/X2MYByA4C8Q3oBhx/CcG92cPZonKc85wCKVeoYJQu0AQIpiqoW77xKrbC69oGz8poImQSoHACoOqAKaNEojOCdRh9yZ4JxE7QCMZ46iSvM4KVpzbnlnN1clsC3CZHNVApPRTAn+AulUJYhLm9GbGUcmRM2lsReDRcK5NNWbFsw4l6bqg8vs8NJcgtoVM9tZMVPT/yPLLFIBo6AjSIVuzBArpmpYyq9qPKyluS9qf1Pe+VLbufRN83FyODtRxtM6gYgypS8mM0dkcwxfodBLGTlGER0jw7W508Y7FlV3xuNp4xWYMdI5I964n1g3gEOIkhk9wXAkJEWiZERJRZGS8oQX5xLSqJvxxw+UZ6D9KQT5DJweAOd+lO4fYRUpvwC6p55RU+bjKS+tLxpdD4jNWBgqCqIwJ03LFzE9kh7uZCK29ji2VrWQY7wWhrxuAIfgR1V/Jw6EyPY62ebKFQo2HCYD9H6hDlwkiYdd8OaJettEK6fyKBFAvl/nYIff06F9gOC3qv01Q2Uw5HWy7ffUNpeKVLHUCNoncX8P9ntqm0tV6nU4GO6pI47ZddsjXguj3B4jdE89o9bYXClV4fE9tfi2K0NFQeTnpOnKPbUfJVJFWdN4rKI7m/FaGO0ASF9HmlFfR06Vo2b0lgdnkV6MUNAW56TpWigxOitjFDUNN7ikpDvK8FhF1cGEobdZSNXnghMUpiSdbDvXn2xwSm6V2bvPcDGKlG6yxzzRNtFKKJHGlxJizPPmIRldKJGmBQUE7qu6bHKCwpSok22/JbC5VHYVS412nRJES9ljHptLZbKEEkkMJRJ+v6DbHjMeq+i2xwzdL8yo+efR+pKv5NH2I+Zxc4aCtjgnTdeCtpGms5jympEnLWlGTZE413x6SCP6Pi3+968+3viKikdeuKQ8J8VXouXMelye4RcuSdV9hzP8wiVl3cFjfuGSiu2Mr4RAecRrFhE2muorWd5NJmUXsxKyTQnegp2zCHQKFEWpSoW5mF+4pDI9SeSFS+V6KGyGpDZ3rVTW8DixroT3Nmk3+gd++A8kWyOPCFDWqdH8iIDR4WtlMynpV32B38hU7n8FfjdAubcU5P1MmlE/q6P1JV8ZJbXpUVBB3lOgPCfFh4risxro+1cVp9ZUUG7G2YSVTELfmA8pdtNzPh9Sq9368OWhPXTT7dR5s94c1Tm1F74IVALls9yzl+wRN1ndfnnlIN0vnT9vDt1HdBPaPrad+Y/TWPyl+9FT2rLJiySXERyj36uXC6r8i7HrsOg6DCeiTrvOMYN46V2Ydh9vt3oRrE5/ktVz06+3S+3+0x9ud9/XQmqQjW/MySTM04LO6OB3/by3hH93Hm2xyKf1fXdk7I8fq1buz6et+ak3V+cm681d++sLFLQY6JsM900GHY2gtprBJmccdNferu/anW4zZKUeX4T+MWvivBiawRH4V2Ap/P0k8vHr9VHd159224frU7rwh8PuqTUcqb4vMR6ik+qicbJFstEi5U+wyE8Icvl5hFwQs/0Mmk2/UF4MN2nn9F6YV3Qw1b+qIDeZmf4PzdwDVOio+iMN7YeGWdaX8Ni08R3fyErTv3niUXcOhmlBZ1Tcy9lc7Q/bx0lK6CQljUpjpzxn33bWPmyvjyIXHz6t7vft8jTAdT/AY2twhn+cPOhwkra/vl8/rF/s9yLz5c9M+7bN8mnCLss+OHzBUYtJ3ZLZSGnaSGeo2//81ct3Vog7Lj8K9jZfoXOZFnRGYjfrzwrs/buwAe6WwjVn7nDvu3CtC0rXh/ahn9T9U/u4W296IuZ+ddN2brH4++rQ/vC5E/rD/XZ11wXPP+zafTeP237GXUS9P6Hz7HwqlCKXGLx/fv4fQR9A0w==
In the proposed blueprint, the average value of all items in intermediate chests is calculated and each inserter is turned on if the number of items in the intermediate chest associated with it is less than the average value. Also, the resource loading station sets a limit on the number of trains, depending on the amount of resources in the intermediate chests.
# Loading and Unloading liquids
The drawing of unloading and loading liquids is completely the same, differs only in the direction of the pump. I will give only one drawing for one tank car and two pumps, it can be easily extended to a train of 4 fluid wagons.
0eNqllmFvgyAQhv/LfZZGQBT9K0uz2Eo6MkWDuKxp/O9D2866XDbLvqmB5733uDu8wKEeVGe1cVBcQB9b00PxcoFen0xZT9/cuVNQgHaqgQhM2UxvttQ1jBFoU6lPKOgY/bmld60tT4q40rw/bGXjPgJlnHZaXaXnl/OrGZqDsp79QPCypzdHZvUIurb3u1ozSXpSlmcRnKEgIqbjFNAPEHsalOQ5BuLfoEZVemiIqtXRWX0kXVsrjJfsxJ2Y7oQ3b5TXP7SDnSzTdI+oJKtkk1t2EbhYwxGUCHCeYaD0G9Tpzh9lS062HUyFkeIlLDF7rrT1aZqXMISd4ZWCkNlCTnDDMsAwCspXhrH9fAmG4cHQeIEMTYce4R3Bt2SK0gB7HA2NhSQ93hQk3+6abgImAa7RQUBFUBnLfFOY6T+mw01iNR04Nhxo9nwyJDrMaECvSHQ40DyAhHYMWzpmAhnii/PXCpJ8fTC+VHpXXp8BMIWAFpJoCzH2/JyWFJ8UjAdEhd91Ac2S+frwd/F8axcP/wURfCjbXwteUr+MZSnPU5Ek4/gFc/anpg==
Often, one pump per fluid wagon is enough.
# Loading and Unloading uranium ore
The mining of uranium ore (Uranium ore
) requires sulfuric acid (Sulfuric acid
) in the amount of one unit of acid per unit mass of uranium ore is mined. Typically, a train set is used, where the first tank car is for transporting acid to mining, the remaining freight cars are for transporting mined uranium ore. Using barrels of sulfuric acid is not as effective: proof (opens new window). One freight wagon of uranium ore with one uranium reserve in the set of Covarex enrichment processes (Kovarex enrichment process
) is usually enough to identify all the needs for nuclear fuel, for this it is always necessary to carry at least 2 thousand acids to hit. The train will need a special schedule.
0eNrNVFuO2yAU3Up0v/EIg7GN19Df+aqiiNjERcIQYcg0iryA7qPdWFdSIGmSzkMz89eviPs495x7j3OCrQ5y75Tx0J1A9dbM0H09waxGI3SK+eNeQgfKywkQGDGll7a9naxXBwkLAmUG+R26ckHvNgYnjApTYd19J1nWCKTxyit5np8fx40J01a6CP3aZAR7O8cWa9K4CMNp+8A4bRiCI3QFwzyOsE5FMHEuww8p2VttXepxKUI5KVnd1rxsKK44J3XDmrYksXDMHZi1LaENrpqSs4pWrME0p7cxjUCkooq3OAPFn7KqaU0iVt02bElLeaaGXNXsdFBD8STGSO6lnIq9K4ewV/DpFb8XbrRv4jPyoXUpc4gh62KRCVqnW839NzkEfTnW7SbpXd7lz176CwdfrBiUGVfF6vHsg1XyAYInofwmem/I9M6gEXIvnNxcbBQPhu4tFctDNG065qUtqdopN/vN5zyYPO9F+gAIxhhdBgufLAK/f/yCZVlnZ19lPBr9fwt5qeInZCM+4yLMcCOTvfgpNrnjRmcOehec6gvRx/C/my3f3Ow6+Snr6u7+jBBosZU6Lfu24NXVVggO0s2ZHWnLquGkqSmvWVUtyx9pL5Wh
← Autotorio Uranium ore →